

Answers for Science. Knowledge for Life.™

Jeremiah D. Tipton, Ph.D. SCIEX Advanced Workflow Specialist in OMICS

OMICS Research

http://www.luxor.com/entertainment/bodies.aspx

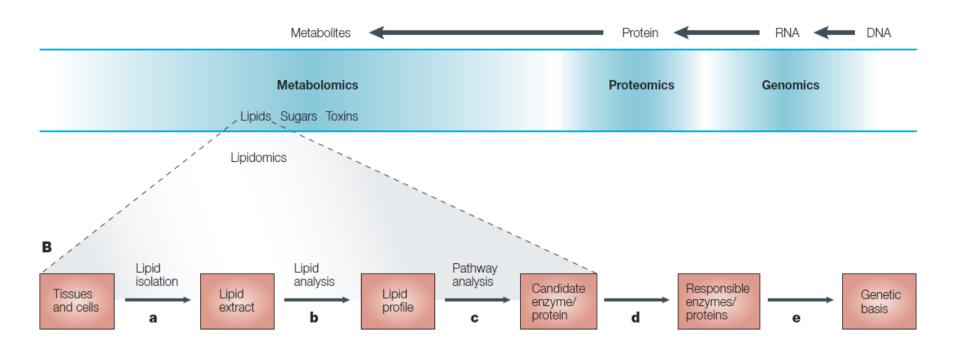
SCIEX Metabolomics \ Lipidomics Workflows

Discovery

Quantitative Targeted Profiling

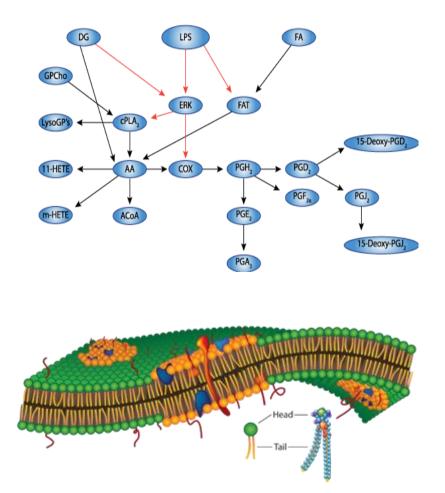
Clinical Utilization

IDA MSMS SWATH[™] Global Discovery (MS/MS^{ALL}) for Lipids

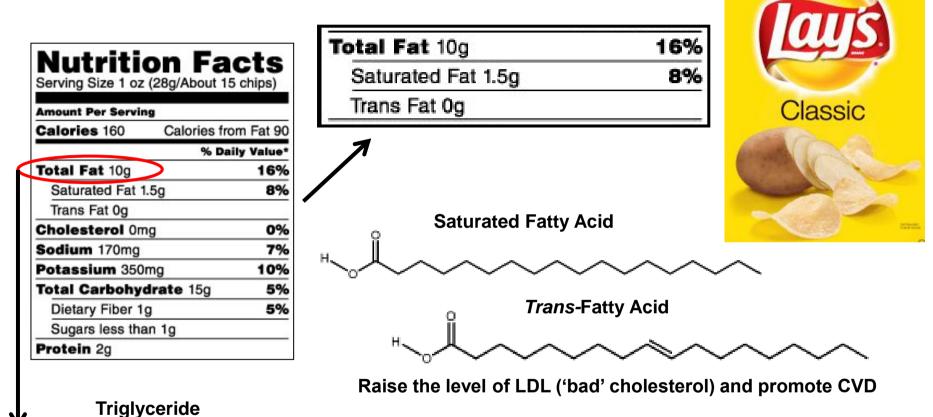

QTRAP® Platforms

Global Discovery (MPIS)

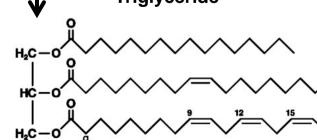
Lipidomics — A Part of the Omics Spectrum


Wenk et al. Nature 2005

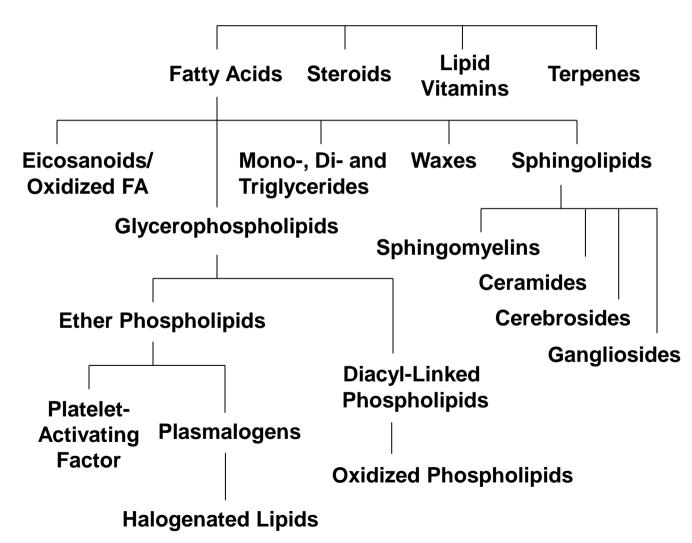
Lipidomics


A Subset of the Metabolome

- The study of pathways and networks of cellular lipids in biological systems.
- The 'lipidome' describes the complete lipid profile within a cell, tissue or organism and is a subset of the 'metabolome'
- The metabolome is the total number of metabolites present within an organism, cell, or tissue



Why's That Potato Crisp So Tasty?


Clinical studies have shown that the type and position of the fatty acyl substituents of TAGs play an essential role in lipid digestion, absorption and metabolism

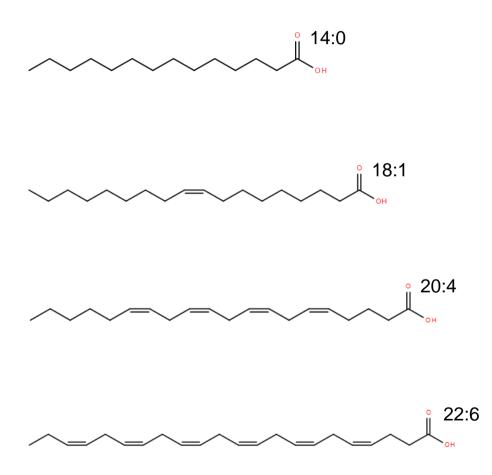
Lipidomics

Comprised of multiple, distinct structural lipid classes

Lipids play an essential role in human physiology:

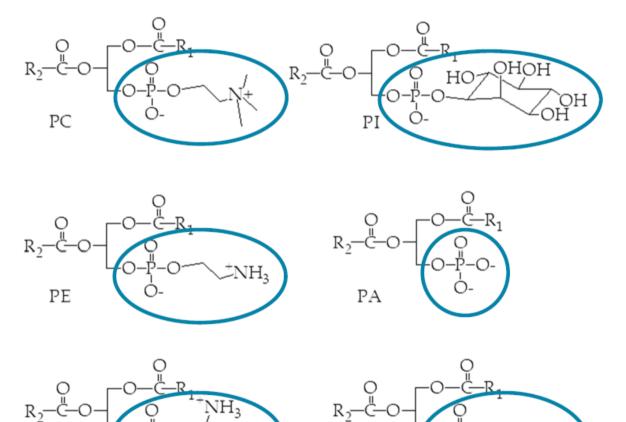
- Metabolic homeostasis
- Cell and organelle structure
- Cell signaling

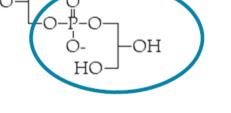
And disease:


- Inflammation
- Cancer
- Cardiovascular disease
- Diabetes
- Inflammatory bowel disease
- Neurological diseases

Short List of Must Know Common Fatty Acids

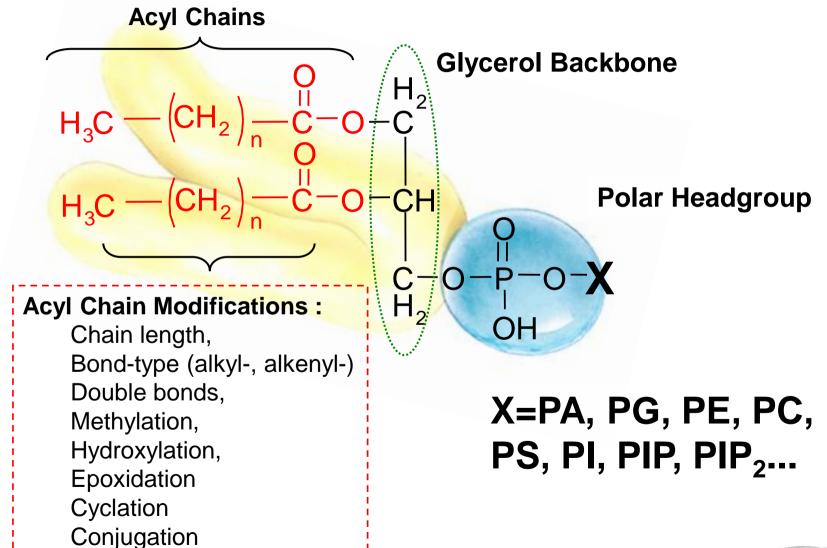
Common Name	Carbons: Double Bonds	ES(-) m/z	
Myristic Acid	14:0	227.2	
Palmitic Acid	16:0	255.2	
Stearic Acid	18:0	283.2	
Oleic Acid	18:1	281.2	
Linoleic Acid	18:2	279.2	
Linolenic Acid	18:3	277.2	
Arachidonic Acid	20:4	303.2	
Eicosapentenoic Acid	20:5	301.2	
Docosapentenoic Acid	22:5	329.3	
Docosahexenoic Acid	22:6	327.3	


Structural Examples

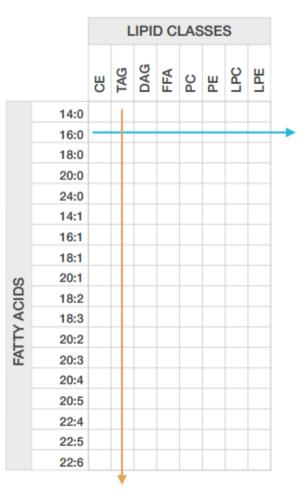

Common Phospholipids

Phospholipid (PL) Sub-Classes

PG

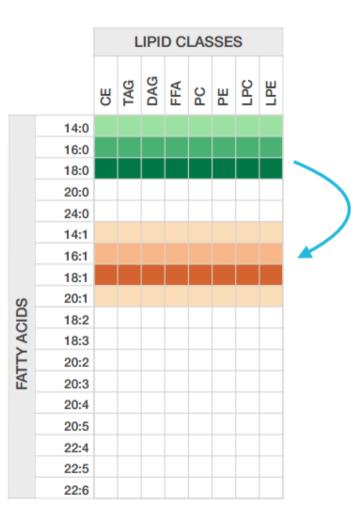

`COO-

PS


Diversity of Phopholipid Molecular Species

Complex Lipids are like a Matrix

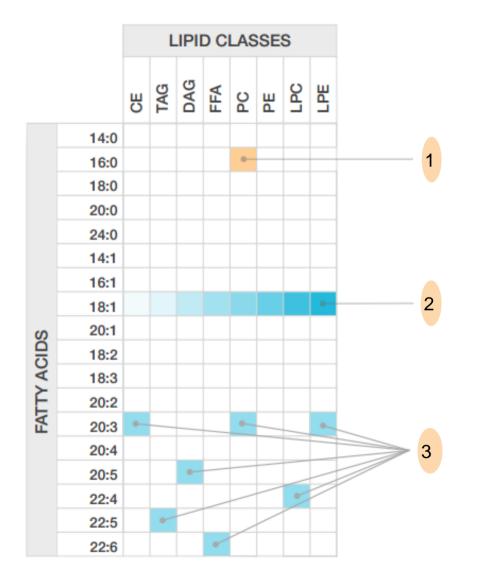
- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)



Sum = concentration

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes


Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes
- When lipid class metabolism is altered there is the ability to change all members of the class

		LIPID CLASSES							
		GE	TAG	DAG	FFA	РС	Ы	LPC	Е
FATTY ACIDS	14:0								
	16:0								
	18:0								
	20:0								
	24:0								
	14:1								
	16:1								
	18:1								
	20:1								
	18:2								
	18:3								
	20:2								
	20:3								
	20:4								
	20:5								
	22:4								
	22:5								
	22:6								

What is needed from a Quantitative Lipid Platform

1) Specificity

 A non-specific method (e.g. PC 36:2) does not allow mapping to the elements of the matrix

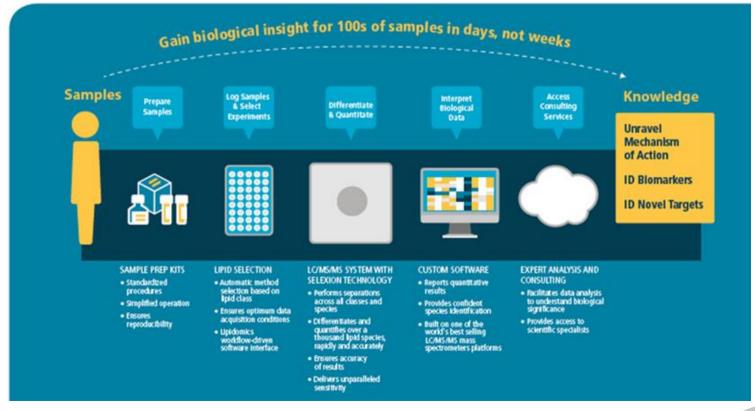
2) Quantitation

 A non-quantitative approach does not allow accurate summing of the rows and columns

3) Comprehensive Coverage

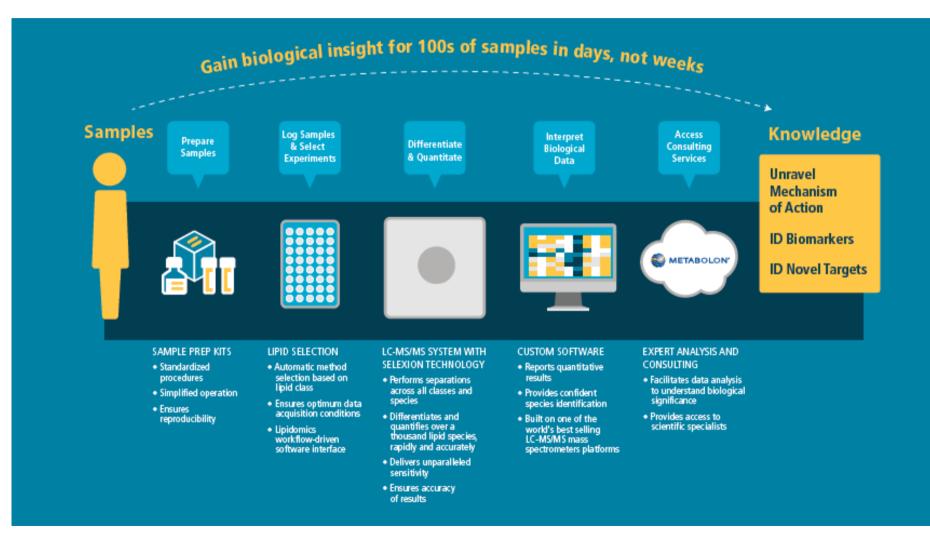
 A partially complete matrix is difficult to interpret

Putting it All Together Sample Prep to Answers


Simplifying the Complexity of Lipidomics and Multiple Steps from Sample Preparation to Knowledge

Powered by METABOLON®

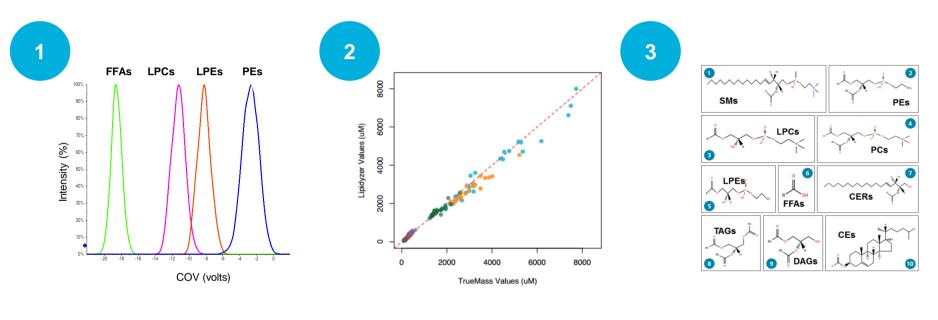
One Streamlined Workflow for Peak Performance


Work faster and smarter

Lipidyzer Platform makes lipid analysis easy and seamless. The simple, integrated workflow allows you access to comprehensive data, quickly and confidently, while expert analysis services provide you with the the assurance to gain accurate biological insight.

Simplifying the Complexity

Analytical Challenges in Lipidomic Analysis


The Lipidyzer[™] developed to address specificity and quantitative rigor

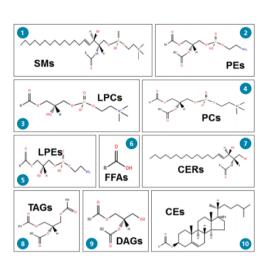
- Specificity:
 - Resolve isobaric interference between different lipid classes
 - Determine lipid class and molecular species composition in a single run
- Quantitation:
 - Ensure spray stability
 - Minimize carryover
 - Neutralize quantitative bias

Benefits of the Lipidyzer™ Platform

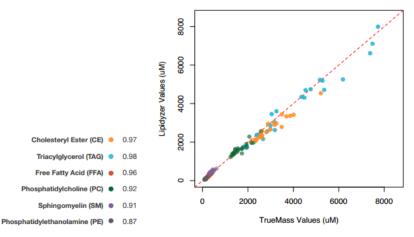
Powered by METABOLON®

Specificity

Quantitation


Coverage

Why the Lipidyzer™ Platform? – <u>Standards</u>


Standardization of Sample Preparation

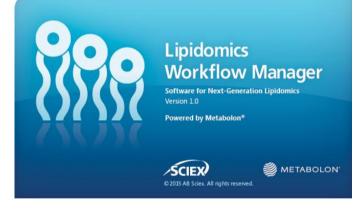
- Novel internal standard kits and methods designed exclusively for the Lipidizer[™].
- Built on Metabolon's "know-how" of commercial lipid analysis platforms and standard procedures
- Provides user with confident, reproducible quantitation
- Over 90 internal standards across ten lipid classes – a complete unique strategy!

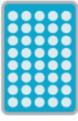
Correlation of Lipidyzer Results With True Values

Sample Preparation

Sample Prep: Lipid Extraction Methods

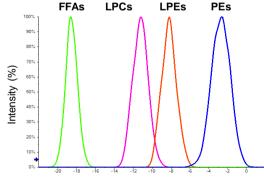
- Primary source of error in lipid analysis
 - Internal standards help, but manual process can contributes to a high %CV
- Classic techniques: Methods of Bligh and Dyer and Folch
 - Bligh and Dyer: 1 Part aqueous (sample), 2 parts MeOH, 0.9 part CH₂Cl₂; Vortex (except plasma and brain—gently invert sealed test tube to avoid emulsion); Add 1 part H₂O, 1 part CH₂Cl₂; Vortex; Centrifuge (1200 rpm x 10 min); Take lower layer and evaporate solvent; Re-suspend in appropriate solvent for injection
 - Folch: 1 Part aqueous (sample), 19 parts 50:50 MeOH/CH₂Cl₂; Vortex; Add 4 parts H₂O (or 0.9% NaCl); Vortex; Centrifuge (1200 rpm x 10 min); Take lower layer and evaporate solvent; Resuspend in appropriate solvent for injection


CH₂Cl₂ will extract plasticizers; always use glass


Why the Lipidyzer™ Platform? – <u>Software</u>

Lipidomics Workflow Manager

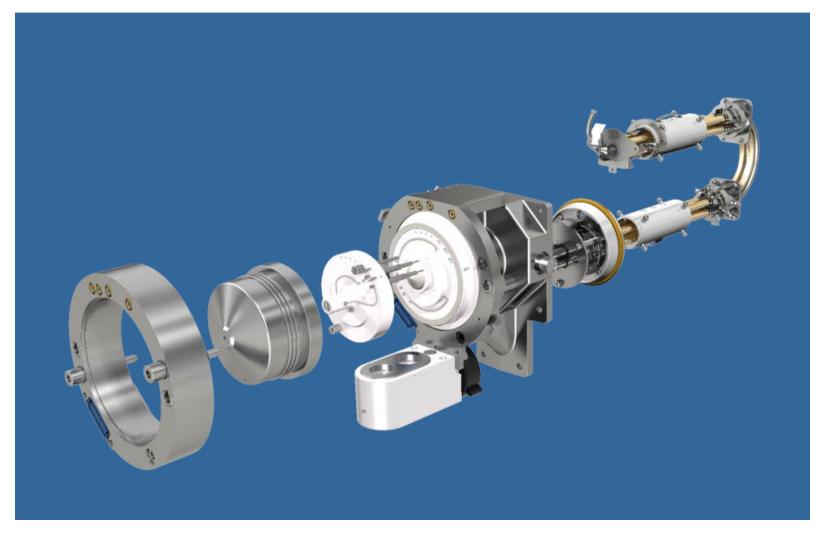
- Sample login and metadata entry
- Selection of lipid class-specific methods
- Fully automated experimental design
 - Internal standard assembler allows automated calculation of volumes to add for your analysis
 - Automated templates of samples batches to ensure statistical distribution
 - Automated SelexION[™] tuning and system suitability tests.
- Controls your entire workflow



Why the Lipidyzer™ Platform? – Measurement

QTRAP® 5500 & SelexION[™] Technology

- A complete package for lipidomics analysis
- Robust and trusted quantitative mass spectrometry platform the 5500 QTRAP®
- Ensure the highest level of data reproducibility using the new SCIEX branded ExionLC System.
- Perform most confident separation of isobaric lipid species using <u>SelexION™</u> <u>Differential Mobility Separation Technology</u>


COV (volts)

Lipidyzer[™] Hardware Configuration

5500 QTRAP[®] System with SelexION[™] Technology

Challenges in Lipidomic Analysis: Isobaric Overlap

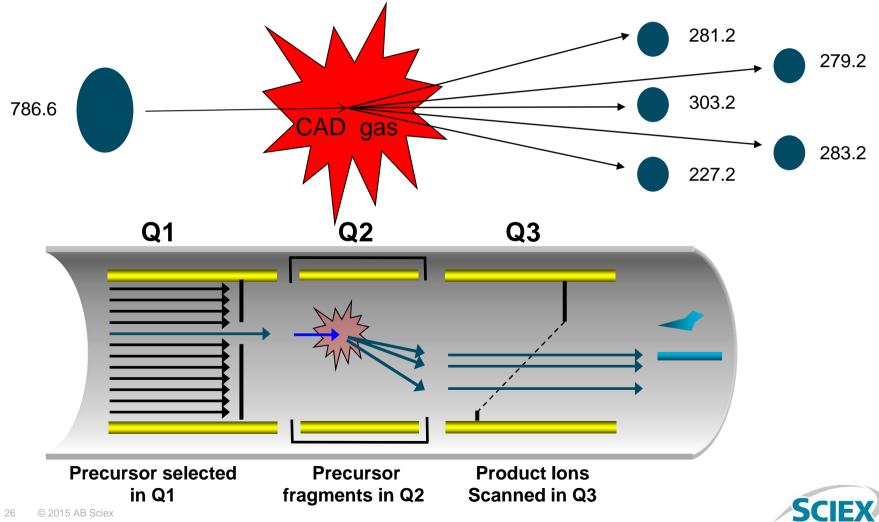
 There are as many as 180,000 different lipid molecular species that are found in a narrow mass range of ~700 amu

PE(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z, 14Z))	1-(9Z,12Z,15Z-octadecatrienoyl)-2-(5Z, 8Z,11Z,14Z-eicosatetraenoyl)-glycero-3- phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z, 14Z))	1-(8Z,9Z,12Z,15Z-octadecatetraenoyl)-2- (8Z,11Z,14Z-eicosatrienoyl)-glycero-3- phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(20:0/17:0)	1-eicosanoyl-2-heptadecanoyl-glycero-3- phosphoethanolamine	C42H84NO8P	761.59
PE(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z, 15Z))	1-(8Z,11Z,14Z-eicosatrienoyl)-2-(8Z,9Z, 12Z,15Z-octadecatetraenoyl)-glycero-3- phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z))	1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2- (8Z,9Z,12Z-octadecatrienoyl)-glycero-3- phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z, 15Z))	1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2- (9Z,12Z,15Z-octadecatrienoyl)-glycero- 3-phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z, 12Z))	1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)- 2-(9Z,12Z-octadecadienoyl)-glycero-3- phosphoethanolamine	C ₄₃ H ₇₂ NO ₅ P	761.50
PE(21:0/18:0)	1-heneicosanoyl-2-hexadecanoyl-glycero- 3-phosphoethanolamine	C42H84NO8P	761.59

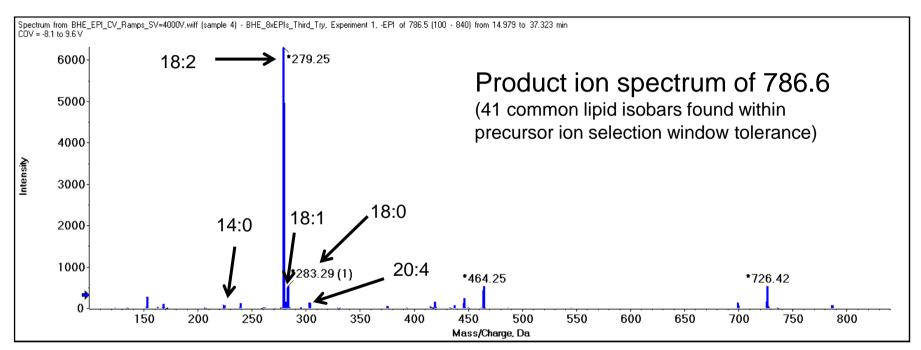
Problem: The Q1 isolation window during MS/MS is ~1.2 Da, which increases the number of potential isobars

LIPIDMAPS Calculator exercise: Select mass of 762.4 with a tolerance of 1.0 amu

108 Lipids identified


Showing page 1 of 3 Results: 1 2 3 Next Showing results 1 to 50 of 108

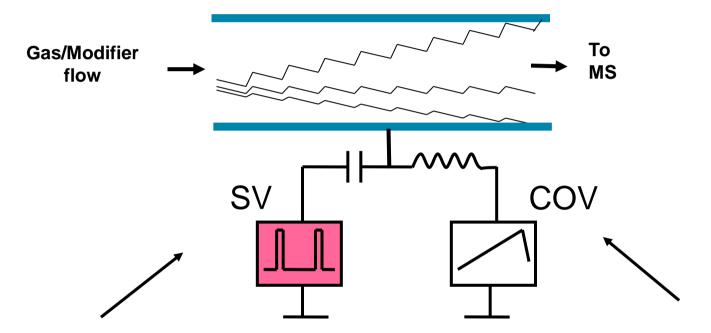
The ambiguous data make it very difficult to use MSMS spectra to positively identify a particular molecular species and makes it nearly impossible to accurately <u>quantitate</u> that molecule


Qualitative Analysis of Lipids – Measurement

Negative ion mode MS/MS fragmentation pattern denotes fatty acid composition of complex lipids

Product Ion Analysis of Lipids

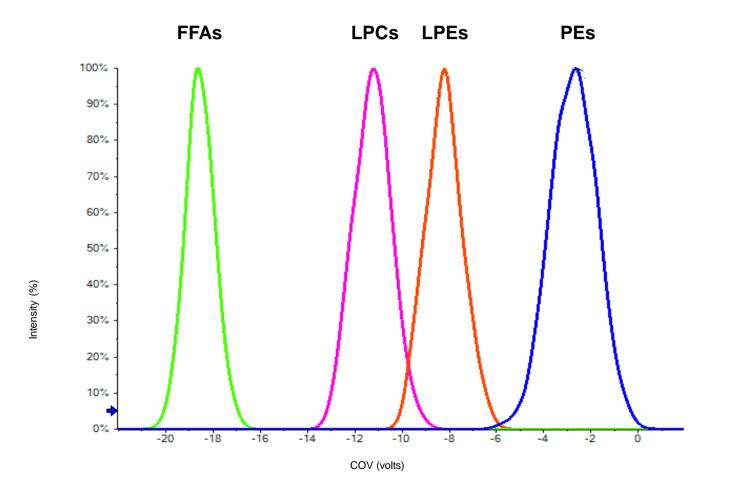
Experiment: Product ion spectrum (EPI) of bovine heart extract (m/z 786.5); no DMS


Multiple fatty acid peaks are visible in the spectrum; no clearly identified precursor molecule is apparent from this spectrum

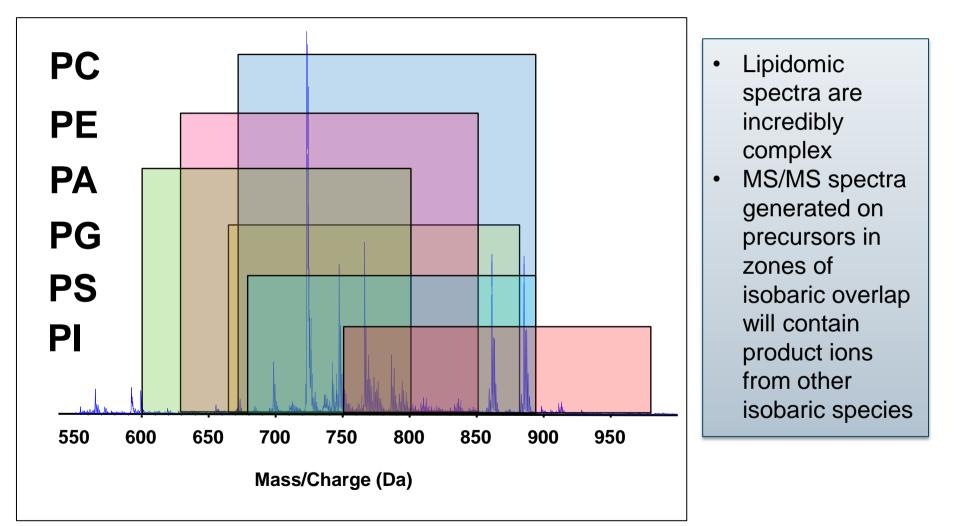
Many lipid isobars share the same fragment ions

How Does SelexION[™] Technology Separate Ions?

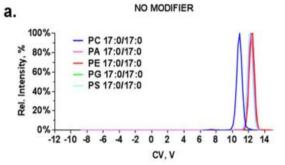
Differential Mobility Spectrometry (DMS) separates molecules using planar geometry

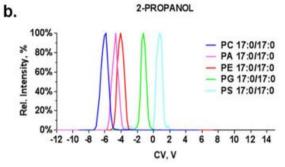


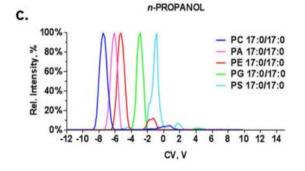
Separation waveform (SV): radially displaces ions towards one or the other electrode, depending upon high and low mobility characteristics Compensation voltage (COV): restores the trajectory for a given ion or range of ions to allow them to transmit through the DMS device and enter the mass spectrometer

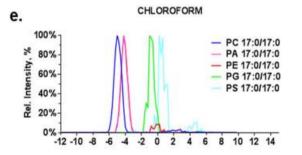

Separation of Lipid Classes Using SelexION[™] Technology

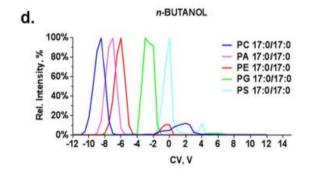
Negative Ion Mode

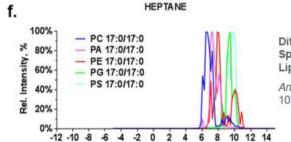

Isobaric Overlap of Phospholipids

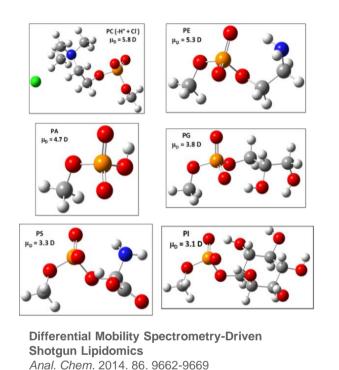




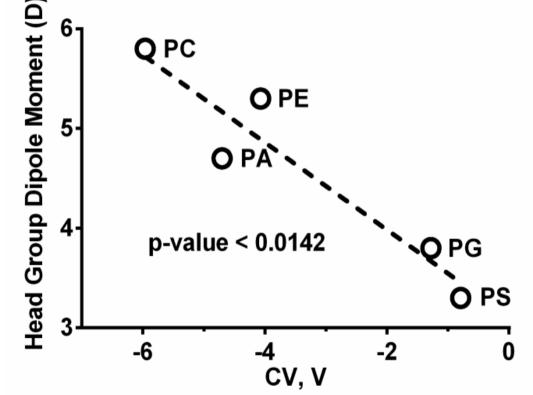

Separation of Lipid Classes Using SelexION[™] Technology


Effects of Modifier on COV Values



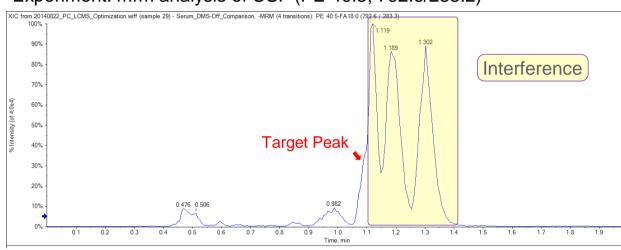


Differential Mobility Spectrometry-Driven Shotgun Lipidomics


Anal. Chem., In Press DOI: 10.1021/ac5021744

Relationship Between Dipole Moment and CoV

Theoretical dipole moments were calculated using isopropanol as a modifying solvent


Molecules that have different dipole moments can be separated by DMS

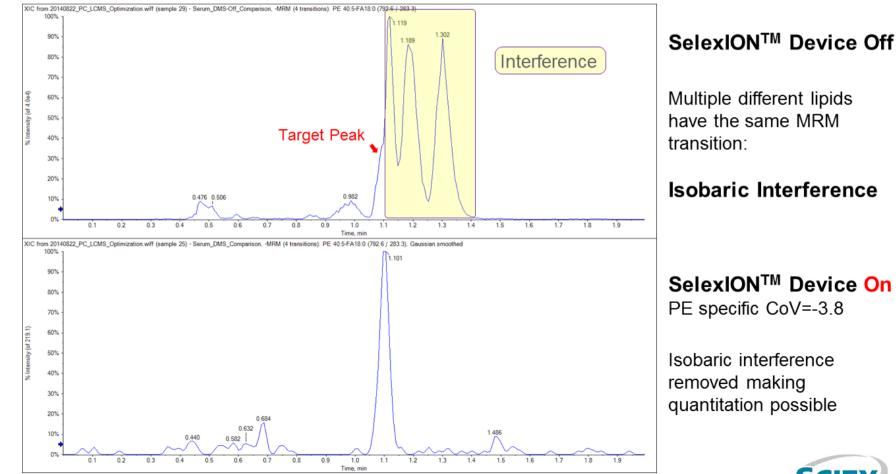
10.1021/ac5021744

Isobaric Interference Among Different Lipid Molecular Species

Isobaric interference makes 'unassisted' MRM analysis by infusion non-specific. SelexION[™] Technology makes it possible

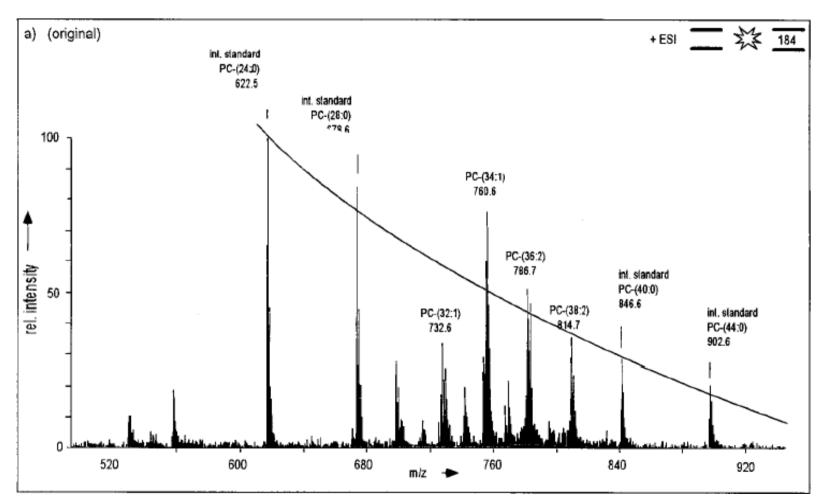
Experiment: mrm analysis of CSF (PE 40:5; 792.6/283.2)

SelexION[™] Device Off


Multiple different lipids have the same MRM transition:

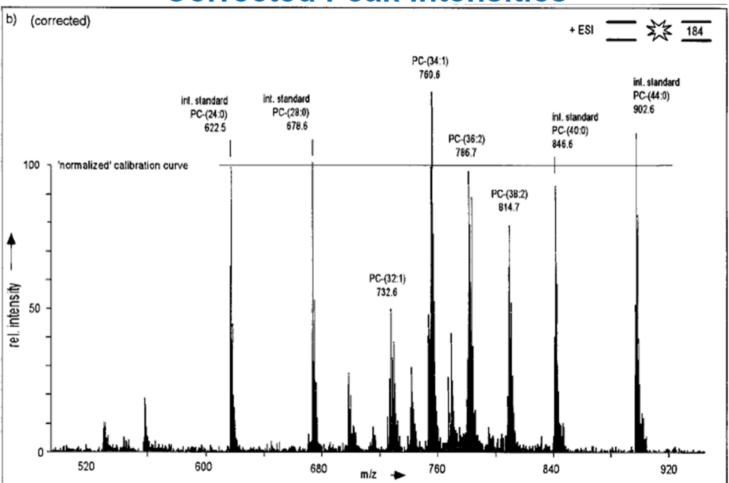
Isobaric Interference

Isobaric Interference Among Different Lipid Molecular Species


Isobaric interference makes 'unassisted' MRM analysis by infusion non-specific. SelexION[™] Technology makes it possible

Experiment: mrm analysis of CSF (PE 40:5; 792.6/283.2)

Challenge of Lipid Quantitation: Unequal Fragmentation Efficiency of Lipids within the Same Class


Diversity of fatty acid chain lengths and degrees of unsaturation result in differential fragmentation efficiency

Murphy et al. Chem Rev 2001, 101, 479-526

Challenge of Lipid Quantitation: Unequal Fragmentation Efficiency of Lipids within the Same Class

Corrected Peak Intensities

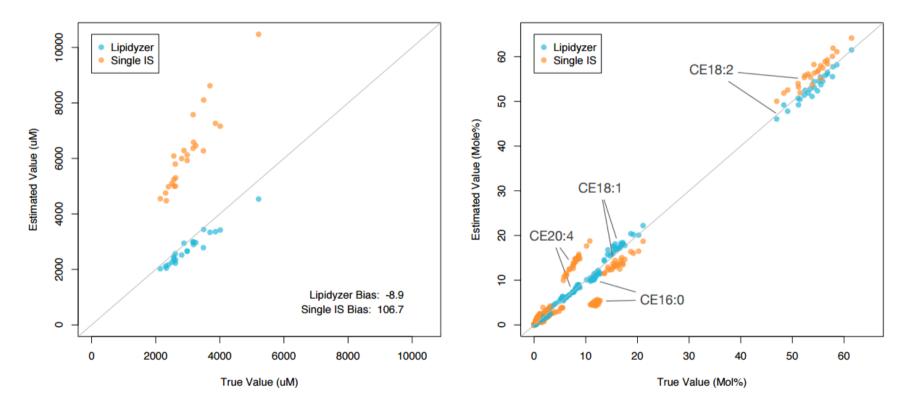
Murphy et al. Chem Rev 2001, 1012 479 526

The Lipidyzer[™] Uses a Broad Array of Internal Standards to Normalize Quantitative Data

Multiple internal standards that reflect the diversity of lipid molecular species within a lipid class "unwarps" quantitative data

PHOSPHATIDYLCHOLINE (PC) INTERNAL STANDARD MIX									
	STRUCTURE	FATTY ACID	POS	%					
() ()		FA16:1 - Palmitoleic acid	sn-2	5					
	ů	FA18:1 - Oleic acid	sn-2	20					
	Å A A A A A A A A A A A A A A A A A A A	FA18:2 - Linoleic acid	sn-2	20					
	С	FA18:3 - α-Linoleic acid	sn-2	5					
	i.	FA20:3 - Dihomo-y-linoleic acid	sn-2	5					
	i	FA20:4 - Arachidonic acid	sn-2	20					
	,l	FA20:5 - Eicosapentaenoic acid	sn-2	5					
	,i	FA22:4 - Eicosatetraenoic acid	sn-2	5					
	,,,,,,,, .	FA22:5 - Docosapentaenoic acid	sn-2	5					
	i,	FA22:6 - Docosoahexaenoic acid	sn-2	10					
	С	d916:0 - Labeled palmitic acid	sn-1	100					

Each lipid class has multiple internal standards at concentrations that reflect those found in biology



The Lipidyzer[™] Eliminates Quantitative Bias

Multiple internal standards per class provide accurate quantitation

CHOLESTERYL ESTERS (QUANTITATIVE)

CE FATTY ACID COMPOSITION (MOLE%)

*Each dot represents one patient serum sample. We measure 25 serum samples from 25 patients

Lipidyzer[™] Generates Accurate Lipid Class Quantitation

Quantitative data with < 10% bias and ~ 5% RSD for lipid classes

8000 6000 Lipidyzer Values (uM) 4000 2000 0 2000 4000 6000 8000 0 TrueMass Values (uM)

Correlation of Lipidyzer Results With True Values

*TrueMass = GC-FID, gold standard

CORRELATION WITH TRUEMASS DATA

Cholesteryl Ester (CE)

Triacylglycerol (TAG)

Free Fatty Acid (FFA)

Sphingomyelin (SM)

Phosphatidylcholine (PC)

Phosphatidylethanolamine (PE)

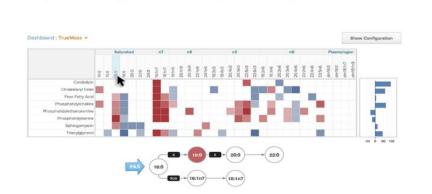
0.97

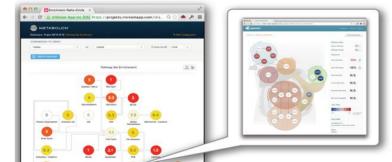
0.98

0.96

0.92

0.91


0.87


Why the Lipidyzer[™] Platform? – <u>Data Analysis</u>

Automated Output of Results

- Data Visualization including pathway mapping, heat maps, QC charts and quantitative data tables
- Figure resolution allows direct use for publication
- Easy publishing to the cloud portal for expert data interpretation
- True biological insights

Callout plots to display contribution of species to composition

Identifying pathways contributing to effect

Why the Lipidyzer[™] Platform? – Expertise

Access to Metabolon's Consulting Services

- Cloud enabled data processing and sharing
- Consulting services and study design for in-depth biological data interpretation and disease relevance.
- Expert advice on alternative matrices and sample preparation
- Expertise at your fingertips

OMICS – Continued Education

Article

pubs.acs.org/ac

Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

H. Paul Benton,[†] Julijana Ivanisevic,[†] Nathaniel G. Mahieu,[‡] Michael E. Kurczy,[†] Caroline H. Johnson,[†] Lauren Franco,[§] Duane Rinehart,[†] Elizabeth Valentine,[#] Harsha Gowda,^{†,¶} Baljit K. Ubhi,[∫] Ralf Tautenhahn,^{†,||} Andrew Gieschen,[⊥] Matthew W. Fields,[§] Gary J. Patti,^{*,‡} and Gary Siuzdak^{*}

[†]Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

[‡]Departments of Chemistry, Genetics and Medicine, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States

[§]Department of Microbiology and Immunology and Center for Biofilm Engineering, Montana State University, 109 Lewis Hall, Bozeman, Montana 59717, United States

^fAB SCIEX, 1201 Radio Road, Redwood City, California 94065, United States

¹Agilent Technologies, 11011 North Torrey Pines Road, La Jolla, California 92037, United States

[#]The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

OMICS – Continued Education

For Research Use Only. Not for use in diagnostic procedures.

Targeted Metabolic Profiling Using a High-Resolution Accurate Mass Database to Identify and Confirm Potential Biomarkers in Rose and Sunflower Plant Extracts

Jeffrey D. Miller¹, Cyrus Papan², Dr. Jens Pfannstiel³, Iris Klaiber³, Baljit K. Ubhi⁴, Fadi Abdi¹, Gerard Hopfgartner⁵, Emmanuel Varesio⁵, Tobias Bruderer⁶. ¹SCIEX, Framingham, MA 01701, ²SCIEX, Darmstadt, Germany, ³Universität Hohenheim, Serviceeinheit des LSC, August von Hartmann Str. 3, 70599 Stuttgart, Germany, ⁴SCIEX, Redwood Shores, CA, ⁵Universität Hohenheim, Serviceeinheit des LSC, August von Hartmann Str. 3, 70599 Stuttgart, Germany, ⁴SCIEX, Redwood Shores, CA, ⁵Universität Hohenheim, Serviceeinheit des LSC, August von Hartmann Str. 3, 70599 Stuttgart, Germany, ⁴SCIEX, Redwood Shores, CA, ⁵Universität Hohenheim, Serviceeinheit des LSC, August von Hartmann Str. 3, 70599 Stuttgart, Germany, ⁴SCIEX, Redwood Shores, CA, ⁵University of Geneva, Switzerland.

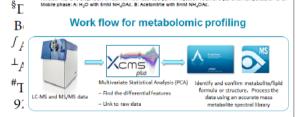
INTRODUCTION

Leves and petitis of plants such as rose and sunflowers have long been used for medicinal and assthetic purposes around the word. Accently, investigation found that phenotic antioxidants escalarly those levels present in rose petiti estination of deep color intense red to maxwell may be responsible for the activity or inhibitions, and thus justifying where use in tadionani medicines.¹ The additions, sunflower reaf the six used in traditional medicine to reduce high fevers and has astringent properties. Bundower leaf poulice may be used on makeline and inscriptions.¹ The leaves are directic and expectational, as are the seaks, so determining what compounds are controluting to the activity and involvement in metabolic pathways is of interest to many scientists. Here we undertook a study to see if there expands not care entitiveases, so determining what comparises in their portions in comparison to one another and itentify compounds associated with these changes certages is and to metables in comparison to one another set investigation.

ABSTRACT

High resolution, accurate mass/spectrometers are the instruments of choice for global metabolismics applications as cell as largeted instabilic, proving as they employ a high edges of acticulty over monital collection of Ma and MMM data in a single-relation. This decovery data can be easiered with a targeted list collection of Ma and MMM data in a single-relation. This decovery data can be easiered with a targeted list of metabolites, from many chemical (asses), pathways and species. Metabolite identification with a high resolution accurate mass MMMI library ensures increased confidence in assistment and ourity scores of metabolites. The species of the species increased confidence in assistment and ourity scores of the species of the species of the species increased confidence in assistment and ourity scores of the species of the s

winnows from a discovery experiment. Recently, a metabolite library has been developed to facilitate trus process. Priere we present some recent results that illustrate that provent la technique in examining a study of priant extracts from different lots of rose petal and sunflowers and employing an accurate mass library for confirmation.


[†]S MATERIALS AND METHODS

Sample Preparation:

C Estractions of rose petals from 3 different lots and an estraction of sunflower leaves were provided by Dr. Pfannatel, University of Holtenheim, Stuttgart, Germany, All estracts were combined into another* pooled* lot as a quality control. The five different sample groups were then highcted for uplicate for analysis.

LCMS Method:

Mass Spectrometer: SCIEX TripleTOF[®] 6600 System. Data were acquired in both positive and negative ion mode using SUATH[™] acquisition and TOF-IDA experiments for comparison of the MISM quality of spectra. HPLC gradent method used an Agient 1520 (pump, column over, autosampler). Column: Phenomenex Kineter[®] XB-018.3 (pum, 2.1 x 100mm. Flow rate: 300 µL/min, Injection volume: 5 µL. Oven temperature: 40°C. Molie phase: XH-op with SmIN MH,OAC. Excelonitire with SmIN MH,OAC.

RESULTS

Step 1: Examination of the sample batch to ensure reproducibility and integrity hijection to injection (Figure 1). Step 2: "Did the experiment work", i.e. did multivariate statistical analysis of the differencies between the prover there one can asaily see differencies between the three roles die stratst, pooled QC's and sumforwar. The "poole" QC samples are abown at the center of the Dicores piot as expected since they are a composite of all samples (Figure 2).

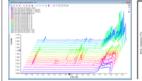


Figure 1. Sample batch of negative mode data, showing injection to injection reproducibility and TIC stacked profiles.

•

Slep 3: XCMDH^{as} software³ was used for multi-variant statistical analysis to generate the non-targeted list of candidates expressing the lowest *p*-values. Clicking on an line entry, the Selected lon Chromatogram appears on the right hand side. The list was exported into Master/ViewTM Software for processing along with the targeted Accurate Mass Intelacting Sectoral Lineary (Figure 3).

	plus														
Daick Compound Search: Search Clear												Please click on a feet be new bolic's details			
100444	H6_2015	15-13.014	2								•		Feature A	9 147	
	COLUMN D	наныларса			Page 1 1428		14 (m)			Vice L. 1994	20,8164		dentities Tream ()	sie) 4.87	
Paulane :	product.	qualer	Cost No.	mit	window lives	Raid	indepen.	addards	(Index)	Sides.		100		- or other	
	9147106-22	345109-10	1.000	740.4525	4.96	27,438	29-HUM-		-01		-	1		- 2222	
2	T 68067w.21	6.00101a-68	8.000	321.8811	6.00	AUTON	(\$29)(\$1		-Cl		- 11	1	_	- 234.00 - 234.00 - 244.00	
з	£400x2+21	100021#18	8.000	300 1141	6.81	2,312,842	[000][8+1]+		4	-					
4	3 10088+30	2108079-18	1.100	1,122,4100	4.88	60			248	-	_	1	-		
	2 088270-18	140103-17	0.000	278 1013	7.68	83,827			14	-		[1]			
	2,220170+10	1440089-17	1.100	141.2012	8.33	20,772	010004		130		- 11				
. F		1.034008-17	0.000	101.0333	5.90	81,825			173						
		200789-17	8.000	517,251	3.34		01008943-		10			18	10 1	v 74	
		2000788-17	6.000	100 1100	6.44	M.H			143		- UI		1011110		
	5541896-19		6.000	PHE5905	5.01		2001040		43			Hare S	ootum mu	- and whisker	
		2001210-07	1.000	211.6216	5.49	32,527			199				Pret he		
•		A.00734a.07	1.100	012,3640	2.71		(BAUDE-D)		34				F	mini	
10		4.00TM#-07	1.100	387.6636	0.02		Tanjaj-		184			11T			
- 14		4.888.019-17	8.800	247.0788	4.84		\$28(8+2)*		108			. 11			
18		0.000109-17	1.100	8.05.0000	8.62	10,381			167			18-			
18		1.104128-18	8.800	103.0480	8.17	941,473			144			101			
	0.319109-10		1.100	228 1210	4.13	810,700			28			-			
	604858x-18		8.000	307.1947	3.90		25906+		150			- 44	- de antes	and the second second	
- 16	7.004779-10	1.000716-18	6.000	366,2494	5.02	2.60			104			160	1045 DE1	102 165 104	

Figure 3. The Results Table from XCMS^{DH} software showing the top 19 candidates with the lowest p-values from the positive mode IDA data. Sections an entry into such as 23 shown inits the overraid XIC's from all samples for visual comparison. The light blue traces shown were the sunflower extracts, dark blue were the "pooled" sample fraces.

Figures 4.4, shown blow are screen captures of the Accurate Mass Metabolite Opechal Library in Library/vewTM Software. Figure 4, at left, is the list of compounds (STO entries) and libraries used in Library/viewTM Software. Figure 5, center, is the individue intry (querectin) for editing, and Figure 5 is the spectral information input window.

81ep 4: Importing the non-targeted results from the multivariate statistical analysis and subsequently processing in Maretrivel¹⁰ Ordense along with the Accurate Mass Metabolic Spectral Library confirmed the presence and reliative amounts (in relation to other groups) of catechin, quercetin, kaempherol and philoretin as well as several readopenous organic acids (Figure 7). The top pane shows the XIG of the Inter chosen (in this case catechin), the center pane contains the report Information and formulas and the bottom two panes show the itrary matches of MD and MdMs spectra.

Figure 6, showe right, shows the positive mode SWATH^{IM} acquisition compared to the ICA data. XIC of the MG spectra was bacically the same (infe) panel, whereas the MGMA XIC of fragment F13 (keempforio) shows the SWATH^{IM} acquisition MGMS is much better than IDA-acquired providing more data points across the XIC peak chromabograms.

Table I. Summary of so

CONCLUSIONS The Accurate Mass Metab and endogenous metabolit these compounds were ea of kaempherol, quercetin, c flavonoid known to be pres rose leaf earticats at differe not lidentified in this sample low levels in the rose earts IDA methods, which is use REFERENCES 1. Cunja, V; Mikulic-Petko

Species and Cultivars: an I 2. Metabolite accurate ma University of Geneva, Swit 3. Developed by Gary SI TRADEMARKS/I For Research Use Only. Ni The trademarks mentioned (# 2015 AB Zerex

OMICS – Continued Education

For Research Use Only. Not for use in diagnostic procedure

Targeted Metabolic Profiling Using a High-Resolution Accurate Mass Database to Identify and Confirm Potential

INTRODU Leaves and pets purposes aroum present in rose p inhibitions, and it traditional medite

on snakebites a compounds are scientists. Here variances in the perhaps leading

ABSTRAC High resolution, applications as in mass systems. I collection of MS of metabolites, f

resolution accur unknowns from process.² Here plant extracts fr

MATERIA Sample Prepar

Extractions of re Pfannstiel, Univ as a quality con LCMS Method: Mass Spectrom

mode using SW

HPLC gradient r

Mobile phase: A

0

†S

St

§Γ

B

⊥_∕

#т

9

Biomarkers and Omics

Quantitative and Qualitative Metabolomics for the Investigation of Intracellular Metabolism

Targeted Analysis on the QTRAP[®] 5500 System and Reverse-Phase Ion-Pairing Chromatography

Douglas McCloskey¹ and Baljit K. Ubhi² ¹Department of Bioengineering, University of California, San Diego, CA, USA, ²SCIEX, USA

Liquid chromatography-mass spectrometry (LC-MS) provides a powerful analytical tool for understanding and monitoring intracellular metabolism by measuring the metabolome. The study of intracellular metabolism of model organisms, such as *E. coli*, is vital to further our biochemical knowledge¹, to develop new pharmaceuticals that target harmful pathogens², and to improve industrial applications that aim to metabolically engineer bacteria in order to produce commodity chemicals from renewable resources³. Paramount to these endeavors is the ability to reliably and accurately measure the intracellular metabolome. For microorganisms, the compounds of most interest comprise intermediates of high flux pathways such as

Acknowledgements

SCIEX

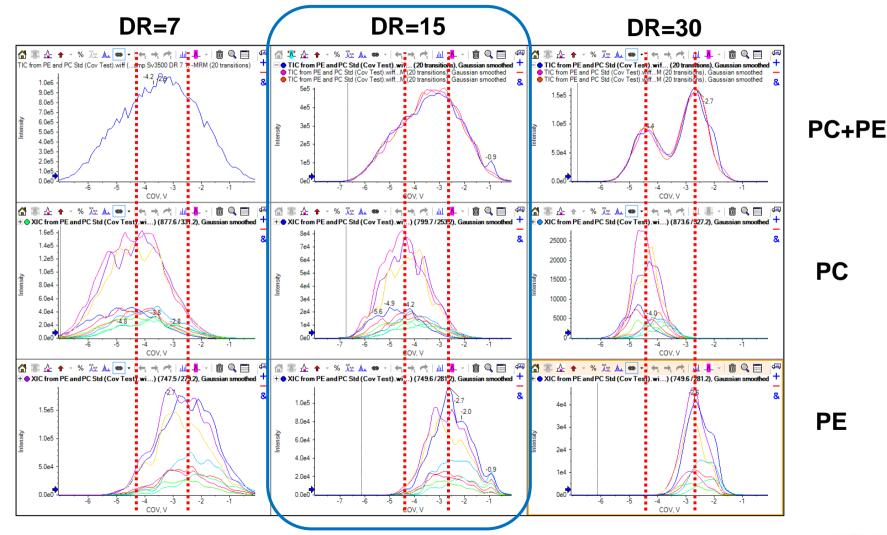
- Baljit Ubhi
- Paul Baker
- Eva Duchoslav
- Larry Campbell
- Yves LeBlanc
- Leo Wang
- Pauline Vollmerhaus
- Fadi Abdi
- Aaron Hudson

METABOLON

- Alex Conner
- Steve Watkins
- Annie Evans
- Richard Robinson
- Luke Miller
- Sarada Tanikella
- Corey DeHaven

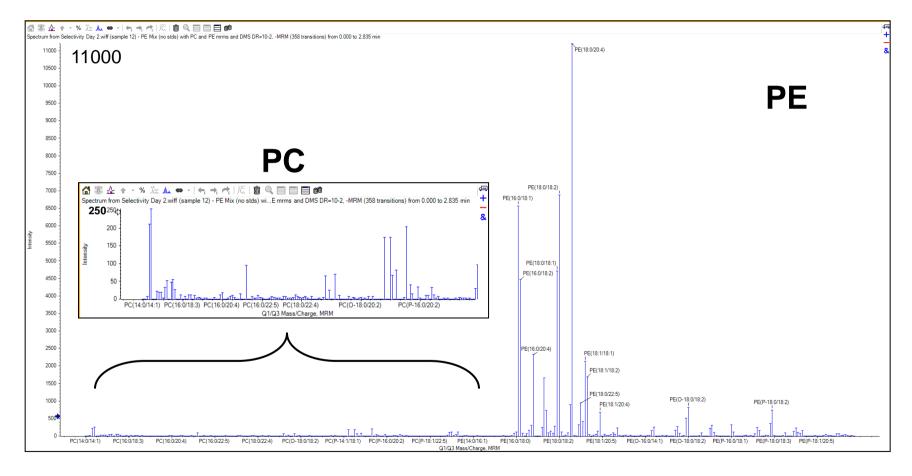
Legal Acknowledgements:

For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.


© 2015 AB SCIEX.

PC/PE Standard Mixture Resolution

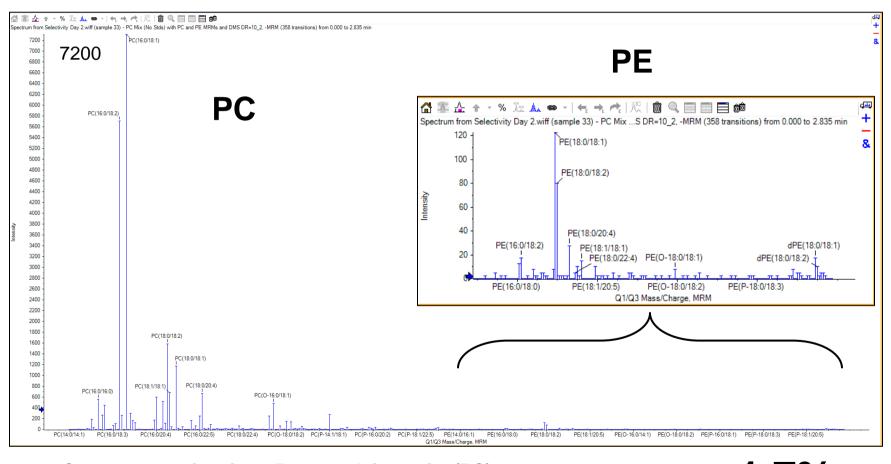
SelexION[™] Technology effectively resolves different lipid classes



47 © 2015 AB Set Solution gas (DR) slows down ions in the DMS cell to enhance resolution

Cross lipid Class Contamination

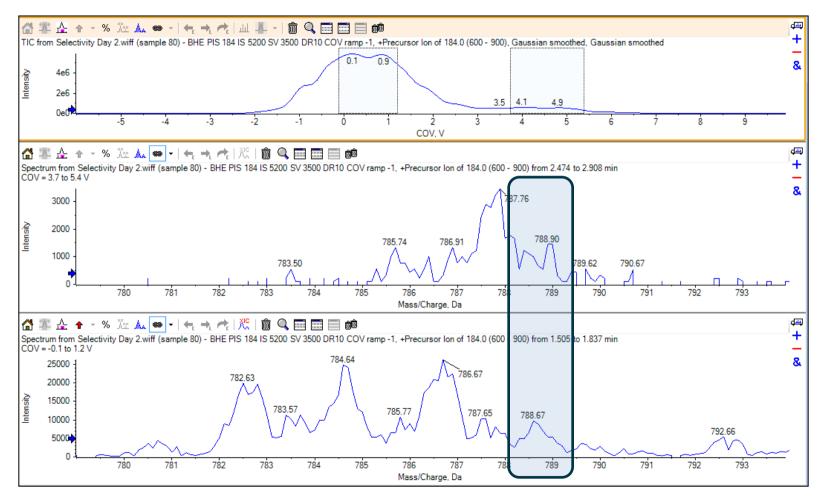
PE Mixture analyzed with both PE and PC MRM transitions



Cross over estimation: Base peak intensity (PC) Base peak intensity (PE) $X 100 = (250/11000)^* 100 = 2.3\%$

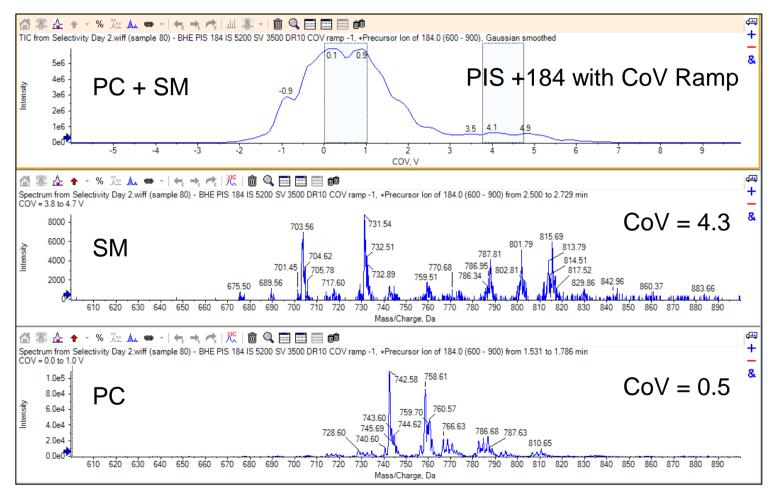
Cross lipid Class Contamination

PC Mixture analyzed with both PE and PC MRM transitions


Cross over estimation: Base peak intensity (PC) Received the peak intensity (PC) $X 100 = (120/7200)^* 100 = 1.7\%$

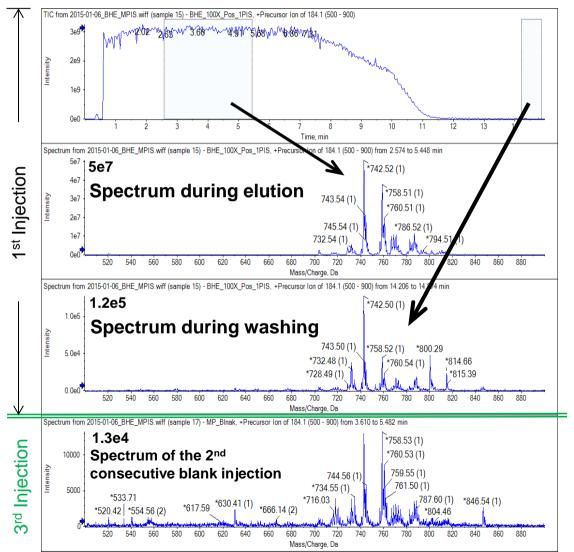
Base peak intensity (PE)

Challenge in the Analysis of PC and SM


Both Phosphatidylcholine and sphingomyelin share the same fragment mass: +184

The peak intensity of 787/184, without resolution, is attributable to both SM 40:1;2 and the n+1 isotope of PC 36:2

SelexION[™] Technology Resolves PC and SM Lipid Classes


Despite sharing a common, identifying fragment, PC and SM can easily be differentiated

MRMs associated with a class-dependent CoV are specific and selective

Key Concern #2 : Sample Carry-Over Between Injections

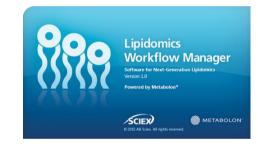
The solution is the use of PeakSil tubing

- The Use of PeakSIL tubing dramatically reduces carryover, as compared to regular Peak tubing
- Background level reduced to very low level in the same run
- Background level further reduced to after two blank injections

The Lipidyzer™ Platform Products

The Lipidyzer[™] platform

- Components:
 - Exion LC, SelexION, 5500 QTRAP®,
 - Lipidomics Workflow Manager software
 - Platform Getting Started Kits
 - PN: 504900


Lipidomics Workflow Manager: Standalone

- Lipidomics Workflow Manager Software
- Getting started kits
- PN:5041390

The Lipidyzer Internal Standard Kits

- SelexION Tuning Kit the Lipidyzer[™] Platform
- Getting Started Kit for the Lipidyzer[™] Platform
- System Suitability Kit for the Lipidyzer™ Platform
- Internal Standards Kits for Lipidyzer™ Platform

